Publications

2020-present

  • Toher, C., Oses, C., Esters, M., Hicks, D., Kotsonis, G. N., Rost, C. M., … Curtarolo, S. (2022, April 19). High-entropy ceramics: Propelling applications through disorder. MRS BULLETIN. https://doi.org/10.1557/s43577-022-00281-x
  • Hossain, M. D., Borman, T., Kumar, A., Chen, X., Khosravani, A., Kalidindi, S. R., … Maria, J.-P. (2021). Carbon stoichiometry and mechanical properties of high entropy carbides. ACTA MATERIALIA. https://doi.org/10.1016/j.actamat.2021.117051
  • Hossain, M. D., Borman, T., Oses, C., Esters, M., Toher, C., Feng, L., … Maria, J.-P. (2021, September 2). Entropy Landscaping of High-Entropy Carbides. ADVANCED MATERIALS. https://doi.org/10.1002/adma.202102904
  • Feng, L., Fahrenholtz, W. G., & Brenner, D. W. (2021). High-Entropy Ultra-High-Temperature Borides and Carbides: A New Class of Materials for Extreme Environments. ANNUAL REVIEW OF MATERIALS RESEARCH, VOL 51, 2021. https://doi.org/10.1146/annurev-matsci-080819-121217
  • Esters, M., Oses, C., Hicks, D., Mehl, M. J., Jahnatek, M., Hossain, M. D., … Curtarolo, S. (2021). Settling the matter of the role of vibrations in the stability of high-entropy carbides. NATURE COMMUNICATIONS. https://doi.org/10.1038/s41467-021-25979-5
  • Su, L., Krim, J., & Brenner, D. W. (2020). Dynamics of Neutral and Charged Nanodiamonds in Aqueous Media Confined between Gold Surfaces under Normal and Shear Loading. ACS OMEGA, 5(18), 10349–10358. https://doi.org/10.1021/acsomega.0c00073
  • Rost, C. M., Borman, T., Hossain, M. D., Lim, M., Quiambao-Tomko, K. F., Tomko, J. A., … Hopkins, P. E. (2020). Electron and phonon thermal conductivity in high entropy carbides with variable carbon content. ACTA MATERIALIA, 196, 231–239. https://doi.org/10.1016/j.actamat.2020.06.005
  • Rak, Z., & Brenner, D. W. (2020). Exchange interactions and long-range magnetic order in the (Mg,Co,Cu,Ni,Zn)O entropy-stabilized oxide: A theoretical investigation. JOURNAL OF APPLIED PHYSICS, 127(18). https://doi.org/10.1063/5.0008258

2010-2019

  • Perelygin, V., Voinov, M. A., Marek, A., Ou, E., Krim, J., Brenner, D., … Smirnov, A. I. (2019). Dielectric and Electrostatic Properties of the Silica Nanoparticle-Water Interface by EPR of pH-Sensitive Spin Probes. JOURNAL OF PHYSICAL CHEMISTRY C, 123(49), 29972–29985. https://doi.org/10.1021/acs.jpcc.9b08007
  • Rak, Z., & Brenner, D. W. (2019). Effect of water chemistry on the composition of oxides formed on stainless steel surfaces in light water reactors. JOURNAL OF NUCLEAR MATERIALS, 526. https://doi.org/10.1016/j.jnucmat.2019.151773
  • Lim, M., Rak, Z., Braun, J. L., Rost, C. M., Kotsonis, G. N., Hopkins, P. E., … Brenner, D. W. (2019). Influence of mass and charge disorder on the phonon thermal conductivity of entropy stabilized oxides determined by molecular dynamics simulations. JOURNAL OF APPLIED PHYSICS, 125(5). https://doi.org/10.1063/1.5080419
  • Acharya, B., Pardue, T. N., Su, L., Smirnov, A. I., Brenner, D. W., & Krim, J. (2019). Nanotribological Performance Factors for Aqueous Suspensions of Oxide Nanoparticles and Their Relation to Macroscale Lubricity. LUBRICANTS, 7(6). https://doi.org/10.3390/lubricants7060049
  • Rak, Z., & Brenner, D. W. (2019). Negative Surface Energies of Nickel Ferrite Nanoparticles under Hydrothermal Conditions. JOURNAL OF NANOMATERIALS, 2019. https://doi.org/10.1155/2019/5268415
  • Harrington, T. J., Gild, J., Sarker, P., Toher, C., Rost, C. M., Dippo, O. F., … Vecchio, K. S. (2019). Phase stability and mechanical properties of novel high entropy transition metal carbides. ACTA MATERIALIA, 166, 271–280. https://doi.org/10.1016/j.actamat.2018.12.054
  • Acharya, B., Seed, C. M., Brenner, D. W., Smirnov, A. I., & Krim, J. (2019). Tuning friction and slip at solid-nanoparticle suspension interfaces by electric fields. SCIENTIFIC REPORTS, 9. https://doi.org/10.1038/s41598-019-54515-1
  • Braun, J. L., Rost, C. M., Lim, M., Giri, A., Olson, D. H., Kotsonis, G. N., … Hopkins, P. E. (2018). Charge-Induced Disorder Controls the Thermal Conductivity of Entropy-Stabilized Oxides. ADVANCED MATERIALS, 30(51). https://doi.org/10.1002/adma.201805004
  • Rak, Z., Maria, J. P., & Brenner, D. W. (2018). Evidence for Jahn-Teller compression in the (Mg, Co, Ni, Cu, Zn)O entropy-stabilized oxide: A DFT study. Materials Letters, 217, 300–303. https://doi.org/10.1016/j.matlet.2018.01.111
  • Rak, Z., & Brenner, D. W. (2018). First-principles investigation of diffusion and defect properties of Fe and Ni in Cr2O3. Journal of Applied Physics, 123(15), 155105. https://doi.org/10.1063/1.5013608
  • Sarker, P., Harrington, T., Toher, C., Oses, C., Samiee, M., Maria, J.-P., … Curtarolo, S. (2018). High-entropy high-hardness metal carbides discovered by entropy descriptors. NATURE COMMUNICATIONS, 9. https://doi.org/10.1038/s41467-018-07160-7
  • Su, L., Krim, J., & Brenner, D. W. (2018). Interdependent Roles of Electrostatics and Surface Functionalization on the Adhesion Strengths of Nanodiamonds to Gold in Aqueous Environments Revealed by Molecular Dynamics Simulations. The Journal of Physical Chemistry Letters, 9(15), 4396–4400. https://doi.org/10.1021/ACS.JPCLETT.8B01814
  • Rak, Z., & Brenner, D. W. (2017). Ab initio investigation of the surface properties of austenitic Fe-Ni-Cr alloys in aqueous environments. Applied Surface Science, 402, 108–113. https://doi.org/10.1016/j.apsusc.2017.01.048
  • Li, D., Bucholz, E. W., Peterson, G., Reich, B. J., Russ, J. C., & Brenner, D. W. (2017). How predictable is plastic damage at the atomic scale? Applied Physics Letters, 110(9), 091902. https://doi.org/10.1063/1.4977420
  • Rost, C. M., Rak, Z., Brenner, D. W., & Maria, J. P. (2017). Local structure of the MgxNixCoxCuxZnxO(x=0.2) entropy-stabilized oxide: An EXAFS study. Journal of the American Ceramic Society, 100(6), 2732–2738. https://doi.org/10.1111/jace.14756
  • Peterson, G. C. L., Li, D., Reich, B. J., & Brenner, D. (2017). Spatial prediction of crystalline defects observed in molecular dynamic simulations of plastic damage. Journal of Applied Statistics, 44(10), 1761–1784. https://doi.org/10.1080/02664763.2016.1221915
  • Li, D., Reich, B. J., & Brenner, D. W. (2017). Statistical and image analysis for characterizing simulated atomic-scale damage in crystals. Computational Materials Science, 135, 119–126. https://doi.org/10.1016/j.commatsci.2017.03.054
  • Li, D., Reich, B. J., & Brenner, D. W. (2017). Using spatial cross-correlation image analysis to characterize the influence of strain rate on plastic damage in molecular dynamics simulations. Modelling and Simulation in Materials Science and Engineering, 25(7).
  • Rak, Z., Rost, C. M., Lim, M., Sarker, P., Toher, C., Curtarolo, S., … Brenner, D. W. (2016). Charge compensation and electrostatic transferability in three entropy-stabilized oxides: Results from density functional theory calculations. Journal of Applied Physics, 120(9), 095105. https://doi.org/10.1063/1.4962135
  • Rak, Z., O’Brien, C. J., Shin, D., Andersson, A. D., Stanek, C. R., & Brenner, D. W. (2016). Theoretical assessment of bonaccordite formation in pressurized water reactors. Journal of Nuclear Materials, 474, 62–64. https://doi.org/10.1016/j.jnucmat.2016.02.016
  • Rak, Z., O’Brien, C. J., Brenner, D. W., Andersson, D. A., & Stanek, C. R. (2016). Understanding the atomic-level chemistry and structure of oxide deposits on fuel rods in light water nuclear reactors using first principles methods. JOM: the Journal of the Minerals, Metals & Materials Society, 68(11), 2912–2921. https://doi.org/10.1007/s11837-016-2102-z
  • Brenner, D. W., Lu, S., O’Brien, C. J., Bucholz, E. W., & Rak, Z. (2015). A particle assembly/constrained expansion (PACE) model for the formation and structure of porous metal oxide deposits on nuclear fuel rods in pressurized light water reactors. Journal of Nuclear Materials, 457, 209–212. https://doi.org/10.1016/j.jnucmat.2014.11.061
  • Rak, Z., Bucholz, E. W., & Brenner, D. W. (2015). Defect formation in aqueous environment: Theoretical assessment of boron incorporation in nickel ferrite under conditions of an operating pressurized-water nuclear reactor (PWR). Journal of Nuclear Materials, 461, 350–356. https://doi.org/10.1016/j.jnucmat.2015.03.038
  • Rak, Z., & Brenner, D. W. (2015). Interplay of electronic structure and unusual development in crystal structure of YbAuIn and Yb3AuGe2In3. Philosophical Magazine, 95(20), 2167–2174. https://doi.org/10.1080/14786435.2015.1052859
  • Lu, S., Mily, E. J., Irving, D. L., Maria, J.-P., & Brenner, D. W. (2015). New Method for Extracting Diffusion-Controlled Kinetics from Differential Scanning Calorimetry: Application to Energetic Nanostructures. The Journal of Physical Chemistry C, 119(25), 150610143303004. https://doi.org/10.1021/ACS.JPCC.5B03317
  • Brenner, D. W., & Shenderova, O. A. (2015). Theory and modelling of diamond fracture from an atomic perspective. Philosophical Transactions. Mathematical, Physical, and Engineering Sciences., 373(2038).
  • Liu, Z. J., Leininger, D., Koolivand, A., Smirnov, A. I., Shenderova, O., Brenner, D. W., & Krim, J. (2015). Tribological properties of nanodiamonds in aqueous suspensions: effect of the surface charge. RSC Advances, 5(96), 78933–78940. https://doi.org/10.1039/c5ra14151f
  • Nunn, N., Mahbooba, Z., Ivanov, M. G., Ivanov, D. M., Brenner, D. W., & Shenderova, O. (2015). Tribological properties of polyalphaolefin oil modified with nanocarbon additives. Diamond and Related Materials, 54, 97–102. https://doi.org/10.1016/j.diamond.2014.09.003
  • O’Brien, C. J., Rak, Z., & Brenner, D. W. (2014). Calculated stability and structure of nickel ferrite crystal surfaces in hydrothermal environments. Journal of Physical Chemistry. C, 118(10), 5414–5423. https://doi.org/10.1021/jp5002308
  • O’Brien, C. J., Rak, Z., Bucholz, E. W., & Brenner, D. W. (2014). First principles calculations predict stable 50 nm nickel ferrite particles in PWR coolant. Journal of Nuclear Materials, 454(1-3), 77–80. https://doi.org/10.1016/j.jnucmat.2014.07.049
  • Rak, Z., O’Brien, C. J., & Brenner, D. W. (2014). First-principles investigation of boron defects in nickel ferrite spinel. Journal of Nuclear Materials, 452(1-3), 446–452. https://doi.org/10.1016/j.jnucmat.2014.05.031
  • Brenner, D. W. (2013). [Review of Challenges to marrying atomic and continuum modeling of materials]. Current Opinion in Solid State and Materials Science, 17(6), 257–262. https://doi.org/10.1016/j.cossms.2013.07.005
  • O’Brien, C. J., Rák, Z., & Brenner, D. W. (2013). Free energies of (Co, Fe, Ni, Zn) Fe 2 O 4 spinels and oxides in water at high temperatures and pressure from density functional theory: results for stoichiometric NiO and NiFe2O4surfaces. Journal of Physics: Condensed Matter, 25(44), 445008. https://doi.org/10.1088/0953-8984/25/44/445008
  • O’Brien, C. J., Rak, Z., & Brenner, D. W. (2013). Free energies of (Co, Fe, Ni, Zn)Fe2O4 spinels and oxides in water at high temperatures and pressure from density functional theory: results for stoichiometric NiO and NiFe2O4 surfaces. Journal of Physics. Condensed Matter, 25(44).
  • Dongare, A. M., LaMattina, B., Irving, D. L., Rajendran, A. M., Zikry, M. A., & Brenner, D. W. (2012). An angular-dependent embedded atom method (A-EAM) interatomic potential to model thermodynamic and mechanical behavior of Al/Si composite materials. Modelling and Simulation in Materials Science and Engineering, 20(3), 035007. https://doi.org/10.1088/0965-0393/20/3/035007
  • Koch, C. C., & Brenner, D. W. (2012). Bulk Nanostructured Materials. In W. Goddard, D. Brenner, S. Lyshevski, & G. Iafrate (Eds.), Handbook of Nanoscience, Engineering, and Technology (3rd ed.). Boca Raton, FL: CRC Press.
  • Gibson, N. M., Luo, T. J. M., Shenderova, O., Koscheev, A. P., & Brenner, D. W. (2012). Electrostatically mediated adsorption by nanodiamond and nanocarbon particles. Journal of Nanoparticle Research, 14(3). https://doi.org/10.1007/s11051-011-0700-9
  • Adiga, S. P., & Brenner, D. W. (2012). Stimuli-Responsive Polymer Brushes for Flow Control through Nanopores. Journal of Functional Biomaterials, 3(2), 239–256. https://doi.org/10.3390/jfb3020239
  • Adiga, S. P., Adiga, V. P., Carpick, R. W., & Brenner, D. W. (2012). The Vibrational Properties of Ultrananocrystalline Diamond Based on Molecular dynamics Simulations. MRS Proceedings, 1404. https://doi.org/10.1557/opl.2012.268
  • Sinnott, S. B., & Brenner, D. W. (2012). Three decades of many-body potentials in materials research. MRS Bulletin, 37(5), 469–473. https://doi.org/10.1557/mrs.2012.88
  • Elkhodary, K., Lee, W., Sun, L. P., Brenner, D. W., & Zikry, M. A. (2011). Deformation mechanisms of an Omega precipitate in a high-strength aluminum alloy subjected to high strain rates. Journal of Materials Research, 26(4), 487–497. https://doi.org/10.1557/jmr.2010.29
  • Hu, Y. H., Brenner, D. W., & Shi, Y. F. (2011). Detonation initiation from spontaneous hotspots formed during cook-off observed in molecular dynamics simulations. Journal of Physical Chemistry. C, 115(5), 2416–2422. https://doi.org/10.1021/jp109583g
  • Dongare, A. M., Rajendran, A. M., LaMattina, B., Zikry, M. A., & Brenner, D. W. (2011). Dynamic failure behavior of nanocrystalline Cu at atomic scales. Computers Materials & Continua, 24(1), 43–60.
  • Purohit, Y., Sun, L., Shenderova, O., Scattergood, R. O., & Brenner, D. W. (2011). First-principles-based mesoscale modeling of the solute-induced stabilization of < 1 0 0 > tilt grain boundaries in an Al-Pb alloy. Acta Materialia, 59(18), 7022–7028. https://doi.org/10.1016/j.actamat.2011.07.056
  • Gibson, N. M., Luo, T. J. M., Brenner, D. W., & Shenderova, O. (2011). Immobilization of mycotoxins on modified nanodiamond substrates. Biointerphases, 6(4), 210–217. https://doi.org/10.1116/1.3672489
  • Brenner, D. (2011). Kenny B. Lipkowitz (ed): Reviews in computational chemistry, Volume 27 [Review of Reviews in computational chemistry, Volume 27, by K. B. Lipkowitz]. Structural Chemistry, 22(6), 1397–1399. https://doi.org/10.1007/S11224-011-9867-Z
  • Adiga, S. P., Adiga, V. P., Carpick, R. W., & Brenner, D. W. (2011). Vibrational properties and specific heat of ultrananocrystalline diamond: Molecular dynamics simulations. Journal of Physical Chemistry. C, 115(44), 21691–21699. https://doi.org/10.1021/jp207424m
  • Crill, J. W., Ji, X., Irving, D. L., Brenner, D. W., & Padgett, C. W. (2010). Atomic and multi-scale modeling of non-equilibrium dynamics at metal–metal contacts. Modelling and Simulation in Materials Science and Engineering, 18(3), 034001. https://doi.org/10.1088/0965-0393/18/3/034001
  • Dongare, A. M., Rajendran, A. M., LaMattina, B., Zikry, M. A., & Brenner, D. W. (2010). Atomic scale studies of spall behavior in nanocrystalline Cu. Journal of Applied Physics, 108(11), 113518. https://doi.org/10.1063/1.3517827
  • Dongare, A. M., Rajendran, A. M., Lamattina, B., Brenner, D. W., & Zikry, M. A. (2010). Atomic-scale study of plastic-yield criterion in nanocrystalline Cu at high strain rates. Metallurgical and Materials Transactions. A, Physical Metallurgy and Materials Science, 41A(2), 523–531. https://doi.org/10.1007/s11661-009-0113-x
  • Purohit, Y., Sun, L., Irving, D. L., Scattergood, R. O., & Brenner, D. W. (2010). Computational study of the impurity induced reduction of grain boundary energies in nano- and bi-crystalline Al-Pb alloys. Materials Science & Engineering. A, Structural Materials: Properties, Microstructure and Processing, 527(7-8), 1769–1775. https://doi.org/10.1016/j.msea.2009.11.034
  • Sinnott, S. B., Heo, S. J., Brenner, D. W., Harrison, J. A., & Irving, D. L. (2010). Computer Simulation of Nanometer-Scale Indentation and Friction’. In Handbook of Nanotechnology, Third Edition (pp. 955–1012). New York: Springer.
  • Elkhodary, K., Lee, W., Cheeseman, B., Sun, L. P., Brenner, D. W., & Zikry, M. A. (2010). Deformation of precipitate platelets in high strength aluminum alloys under high strain-rate compression. TMS 2010 139th Annual Meeting & Exhibition – Supplemental Proceedings, vol 2: Materials Characterization, Computation and Modeling and Energy, 47–52.
  • Gibson, N. M., Luo, T. J. M., Shenderova, O., Choi, Y. J., Fitzgerald, Z., & Brenner, D. W. (2010). Fluorescent dye adsorption on nanocarbon substrates through electrostatic interactions. Diamond and Related Materials, 19(2-3), 234–237. https://doi.org/10.1016/j.diamond.2009.10.005
  • Adiga, S. P., & Brenner, D. W. (2010). Molecular basis for neurofilament heavy chain side arm structure modulation by phosphorylation. Journal of Physical Chemistry. C, 114(12), 5410–5416. https://doi.org/10.1021/jp905671u
  • Dongare, A. M., Rajendran, A. M., LaMattina, B., Zikry, M. A., & Brenner, D. W. (2010). Tension–compression asymmetry in nanocrystalline Cu: High strain rate vs. quasi-static deformation. Computational Materials Science, 49(2), 260–265. https://doi.org/10.1016/j.commatsci.2010.05.004

2000-2009

  • Dongare, A. M., Rajendran, A. M., LaMattina, B., Zikry, M. A., Brenner, D. W., Elert, M., … Butler, W. T. (2009). ATOMISTIC STUDIES OF VOID-GROWTH BASED YIELD CRITERIA IN SINGLE CRYSTAL CU AT HIGH STRAIN RATES. Presented at the SHOCK COMPRESSION OF CONDENSED MATTER 2009: Proceedings of the American Physical Society Topical Group on Shock Compression of Condensed Matter. https://doi.org/10.1063/1.3295254
  • Dongare, A. M., Rajendran, A. M., LaMattina, B., Zikry, M. A., & Brenner, D. W. (2009). Atomic scale simulations of ductile failure micromechanisms in nanocrystalline Cu at high strain rates. Physical Review. B, Condensed Matter and Materials Physics, 80(10). https://doi.org/10.1103/physrevb.80.104108
  • Dongare, A. M., Rajendran, A. M., LaMattina, B., Zikry, M. A., & Brenner, D. W. (2009). Atomistic studies of void-growth based yield criteria in single crystal Cu at high strain rates. Shock Compression of Condensed Matter – 2009, Pts 1 and 2, 1195, 769–772.
  • Gibson, N., Shenderova, O., Luo, T. J. M., Moseenkov, S., Bondar, V., Puzyr, A., … Brenner, D. W. (2009). Colloidal stability of modified nanodiamond particles. Diamond and Related Materials, 18(4), 620–626. https://doi.org/10.1016/j.diamond.2008.10.049
  • Shi, Y., Huang, L., & Brenner, D. W. (2009). Computational study of nanometer-scale self-propulsion enabled by asymmetric chemical catalysis. The Journal of Chemical Physics, 131(1), 014705. https://doi.org/10.1063/1.3153919
  • Irving, D. L., Padgett, C. W., & Brenner, D. W. (2009). Coupled molecular dynamics/continuum simulations of Joule heating and melting of isolated copper-aluminum asperity contacts. Modelling and Simulation in Materials Science and Engineering, 17(1).
  • Sun, L. P., Irving, D. L., Zikry, M. A., & Brenner, D. W. (2009). First-principles investigation of the structure and synergistic chemical bonding of Ag and Mg at the Al vertical bar Omega interface in a Al-Cu-Mg-Ag alloy. Acta Materialia, 57(12), 3522–3528. https://doi.org/10.1016/j.actamat.2009.04.006
  • Elkhodary, K., Sun, L. P., Irving, D. L., Brenner, D. W., Ravichandran, G., & Zikry, M. A. (2009). Integrated experimental, atomistic, and microstructurally based finite element investigation of the dynamic compressive behavior of 2139 aluminum. Journal of Applied Mechanics: Transactions of the ASME, 76(5).
  • Irving, D. L., Padgett, C. W., Guo, Y., Mintmire, J. W., & Brenner, D. W. (2009). Multiscale modeling of metal-metal contact dynamics under high electromagnetic stress: Timescales and mechanisms for joule melting of Al-Cu asperities. IEEE Transactions on Magnetics, 45(1), 331–335. https://doi.org/10.1109/tmag.2008.2008544
  • Elkhodary, K. I., Lee, W., Cheeseman, B., Sun, L., Brenner, D. W., & Zikry, M. (2009). The Effects of Precipitates and Mn-bearing Particles on the High Strain-Rate Compression of High Strength Aluminum. MRS Proceedings, 1225. https://doi.org/10.1557/proc-1225-hh04-08
  • Dongare, A. M., Rajendran, A., LaMattina, B., Zikry, M., & Brenner, D. W. (2008). Atomic scale simulations of orientation of loading axis on the growth of voids at the onset of ductile failure in single crystal Cu. Materials Research Society Symposium Proceedings. Presented at the 2008 MRS Fall Meetin. https://doi.org/10.1557/proc-1137-ee08-09-w10-09
  • Purohit, Y., Jang, S., Irving, D. L., Padgett, C. W., Scattergood, R. O., & Brenner, D. W. (2008). Atomistic modeling of the segregation of lead impurities to a grain boundary in an aluminum bicrystalline solid. Materials Science & Engineering. A, Structural Materials: Properties, Microstructure and Processing, 493(1-2), 97–100. https://doi.org/10.1016/j.msea.2007.05.128
  • Irving, D. L., Padgett, C. W., & Brenner, D. W. (2008). Coupled molecular dynamics/continuum simulations of Joule heating and melting of isolated copper–aluminum asperity contacts. Modelling and Simulation in Materials Science and Engineering, 17(1), 015004. https://doi.org/10.1088/0965-0393/17/1/015004
  • Jang, S., Purohit, Y., Irving, D. L., Padgett, C., Brenner, D., & Scattergood, R. O. (2008). Influence of Pb segregation on the deformation of nanocrystalline Al: Insights from molecular simulations. Acta Materialia, 56(17), 4750–4761. https://doi.org/10.1016/j.actamat.2008.05.024
  • Shi, Y. F., & Brenner, D. W. (2008). Jetting and detonation initiation in shock induced collapse of nanometer-scale voids. Journal of Physical Chemistry. C, 112(16), 6263–6270. https://doi.org/10.1021/jp7119735
  • Irving, D. L., & Brenner, D. W. (2008). MEMS Lubrication: An atomistic perspective of a bound+ mobile lubricant’. Materials Research Society Symposium Proceedings, 1052, 29–34.
  • Crill, J. W., Irving, D., Padgett, C., Zikry, M., & Brenner, D. (2008). Modeling the Effect of Varying Electrical Voltage on the Plastic Deformation of a Single Asperity in Hot-Switched RF MEMS Contacts. Materials Research Society Symposium Proceedings. Presented at the 2008 MRS Fall Meetin. https://doi.org/10.1557/proc-1137-ee10-15
  • Jang, S., Purohit, Y., Irving, D., Padgett, C., Brenner, D., & Scattergood, R. O. (2008). Molecular dynamics simulations of deformation in nanocrystalline Al-Pb alloys. Materials Science & Engineering. A, Structural Materials: Properties, Microstructure and Processing, 493(1-2), 53–57. https://doi.org/10.1016/j.msea.2007.05.130
  • Shi, Y. F., & Brenner, D. W. (2008). Molecular simulation of the influence of interface faceting on the shock sensitivity of a model plastic bonded explosive. Journal of Physical Chemistry. B, Condensed Matter, Materials, Surfaces, Interfaces & Biophysical, 112(47), 14898–14904. https://doi.org/10.1021/jp805690w
  • Purohit, Y., Irving, D. L., Scattergood, R. O., & Brenner, D. W. (2008). Prediction of Energies of <100> Tilt Boundaries in Al-Pb Alloy. Materials Research Society Symposium Proceedings, 1056E, 1056–HH01-105610.
  • Scattergood, R. O., Koch, C. C., Murty, K. L., & Brenner, D. (2008). Strengthening mechanisms in nanocrystalline alloys. Materials Science & Engineering. A, Structural Materials: Properties, Microstructure and Processing, 493(1-2), 3–11. https://doi.org/10.1016/j.msea.2007.04.132
  • Rezvanian, O., Brown, C., Zikry, M. A., Kingon, A. I., Krim, J., Irving, D. L., & Brenner, D. W. (2008). The role of creep in the time-dependent resistance of Ohmic gold contacts in radio frequency microelectromechanical system devices. Journal of Applied Physics, 104(2), 024513. https://doi.org/10.1063/1.2953072
  • Hu, Y. H., Shenderova, O. A., & Brenner, D. W. (2007). [Review of Carbon nanostructures: Morphologies and properties]. Journal of Computational and Theoretical Nanoscience, 4(2), 199–221. https://doi.org/10.1166/jctn.2007.2307
  • Ma, J. B., Zikry, M. A., Ashamwi, W. M., & Brenner, D. W. (2007). Hierarchical modeling of nanoindentation and microstructural evolution of face-centered cubic gold aggregates. Journal of Materials Research, 22(3), 627–643. https://doi.org/10.1557/JMR.2007.0076
  • Brenner, D. W., Irving, D. L., Kingon, A. I., & Krim, J. (2007). Multiscale analysis of liquid lubrication trends from industrial machines to micro-electrical-mechanical systems. Langmuir, 23(18), 9253–9257. https://doi.org/10.1021/la701280k
  • Shi, Y., & Brenner, D. W. (2007). Simulated thermal decomposition and detonation of nitrogen cubane by molecular dynamics. The Journal of Chemical Physics, 127(13), 134503. https://doi.org/10.1063/1.2779877
  • Puzyr, A. P., Purtov, K. V., Shenderova, O. A., Luo, M., Brenner, D. W., & Bondar, V. S. (2007). The adsorption of aflatoxin B1 by detonation-synthesis nanodiamonds. Doklady. Biochemistry and Biophysics, 417(1), 299–301. https://doi.org/10.1134/S1607672907060026
  • Adiga, S. P., & Brenner, D. W. (2007). Toward designing smart nanovalves: Modeling of flow control through nanopores via the helix-coil transition of grafted polypeptide chains. Macromolecules, 40(4), 1342–1348. https://doi.org/10.1021/ma0617522
  • Li, Y. X., Brenner, D. W., Dong, X., & Sun, C. C. (2006). Ab initio study of the role of entropy in the kinetics of acetylene production in filament-assisted diamond growth environments. Journal of Physical Chemistry. A, Molecules, Spectroscopy, Kinetics, Environment & General Theory, 110(1), 132–140. https://doi.org/10.1021/jp054914p
  • Hu, Y. H., Shenderova, O. A., Hu, Z., Padgett, C. W., & Brenner, D. W. (2006). Carbon nanostructures for advanced composites. Reports on Progress in Physics, 69(6), 1847–1895. https://doi.org/10.1088/0034-4885/69/6/R05
  • Irving, D. L., & Brenner, D. W. (2006). Diffusion on a self-assembled monolayer: Molecular modeling of a bound plus mobile lubricant. Journal of Physical Chemistry. B, Condensed Matter, Materials, Surfaces, Interfaces & Biophysical, 110(31), 15426–15431. https://doi.org/10.1021/jp0609840
  • Li, Y., & Brenner, D. W. (2006). Influence of trace precursors on mass transport and growth rate during sublimation deposition of AlN crystal. Journal of Applied Physics, 100(8), 084901. https://doi.org/10.1063/1.2357423
  • Abdelmaksoud, M., Lee, S. M., Padgett, C. W., Irving, D. L., Brenner, D. W., & Krim, J. (2006). STM, QCM, and the windshield wiper effect: A joint theoretical-experimental study of adsorbate mobility and lubrication at high sliding rates. Langmuir, 22(23), 9606–9609. https://doi.org/10.1021/la061797w
  • Padgett, C. W., Shenderova, O., & Brenner, D. W. (2006). Thermal conductivity of diamond nanorods: Molecular simulation and scaling relations. Nano Letters, 6(8), 1827–1831. https://doi.org/10.1021/nl060588t
  • Padgett, C. W., & Brenner, D. W. (2005). A continuum-atomistic method for incorporating Joule heating into classical molecular dynamics simulations. Molecular Simulation, 31(11), 749–757. https://doi.org/10.1080/08927020500262614
  • Schall, J. D., Padgett, C. W., & Brenner, D. W. (2005). Ad hoc continuum-atomistic thermostat for modeling heat flow in molecular dynamics simulations. Molecular Simulation, 31(4), 283–288. https://doi.org/10.1080/08927020512331336898
  • Shenderova, O. A., Padgett, C. W., Hu, Z., & Brenner, D. W. (2005). Diamond nanorods. Journal of Vacuum Science & Technology. B, Microelectronics and Nanometer Structures, 23(6), 2457–2464. https://doi.org/10.1116/1.2122907
  • Adiga, S. P., & Brenner, D. W. (2005). Flow Control through Polymer-Grafted Smart Nanofluidic Channels:  Molecular Dynamics Simulations. Nano Letters, 5(12), 2509–2514. https://doi.org/10.1021/nl051843x
  • Areshkin, D. A., Shenderova, O. A., Schall, J. D., & Brenner, D. W. (2005). Self-consistent tight binding model adapted for hydrocarbon systems. Molecular Simulation, 31(8), 585–595. https://doi.org/10.1080/08927020500044988
  • Areshkin, D. A., Shenderova, O. A., Schall, J. D., Adiga, S. P., & Brenner, D. W. (2004). A self-consistent tight binding model for hydrocarbon systems: application to quantum transport simulation. Journal of Physics. Condensed Matter, 16(39), 6851–6866. https://doi.org/10.1088/0953-8984/16/39/018
  • Schall, J. D., & Brenner, D. W. (2004). Atomistic simulation of the influence of pre-existing stress on the interpretation of nanoindentation data. Journal of Materials Research, 19(11), 3172–3180. https://doi.org/10.1557/JMR.2004.0410
  • Zhirnov, V. V., Shenderova, O. A., Jaeger, D. L., Tyler, T., Areshkin, D. A., Brenner, D. W., & Hren, J. J. (2004). Electron emission properties of detonation nanodiamonds. Physics of the Solid State, 46(4), 657–661. https://doi.org/10.1134/1.1711444
  • Areshkin, D. A., Shenderova, O. A., Adiga, S. P., & Brenner, D. W. (2004). Electronic properties of diamond clusters: self-consistent tight binding simulation. Diamond and Related Materials, 13(10), 1826–1833. https://doi.org/10.1016/j.diamond.2004.04.012
  • Li, Y. X., & Brenner, D. W. (2004). First principles prediction of the gas-phase precursors for AlN sublimation growth. Physical Review Letters, 92(7). https://doi.org/10.1103/physrevlett.92.075503
  • Padgett, C. W., & Brenner, D. W. (2004). Influence of chemisorption on the thermal conductivity of single-wall carbon nanotubes. Nano Letters, 4(6), 1051–1053. https://doi.org/10.1021/nl049645d
  • Brenner, D. W., Schlesser, R., Sitar, Z., Dalmau, R., Collazo, R., & Li, Y. (2004). Model for the influence of boron impurities on the morphology of AIN grown by physical vapor transport. Surface Science, 560(03-Jan), L202–206. https://doi.org/10.1016/j.susc.2004.05.003
  • Nazarov, A. A., Shenderova, O. A., & Brenner, D. W. (2004). The atomic computer simulation of triple junctions of special tilt boundaries in nickel. Physics of Metals and Metallography, 98(4), 339–343.
  • Shenderova, O. A., Areshkin, D., & Brenner, D. W. (2003). Bonding and stability of hybrid diamond/nanotube structures. Molecular Simulation, 29(4), 259–268. https://doi.org/10.1080/0892702021000049691
  • Areshkin, D. A., Shenderova, O. A., Schall, J. D., & Brenner, D. W. (2003). Convergence acceleration scheme for self-consistent orthogonal- basis-set electronic structure methods. Molecular Simulation, 29(4), 269–286. https://doi.org/10.1080/0892702031000092197
  • Bachurin, D. V., Nazarov, A. A., Shenderova, O. A., & Brenner, D. W. (2003). Diffusion-accomodated rigid-body translations along grain boundaries in nanostructured materials. Materials Science & Engineering. A, Structural Materials: Properties, Microstructure and Processing, 359(02-Jan), 247–252. https://doi.org/10.1016/s0921-5093(03)00354-x
  • Nazarov, A. A., Bachurin, D. V., Shenderova, O. A., & Brenner, D. W. (2003). On the origin and energy of triple junction defects due to the finite length of grain boundaries. Interface Science, 11(4), 417–424. https://doi.org/10.1023/A:1026143927269
  • Frankland, S. J. V., Harik, V. M., Odegard, G. M., Brenner, D. W., & Gates, T. S. (2003). The stress-strain behavior of polymer-nanotube composites from molecular dynamics simulation. Composites Science and Technology, 63(11), 1655–1661. https://doi.org/10.1016/S0266-3538(03)00059-9
  • Shenderova, O., Brenner, D., & Ruoff, R. S. (2003). Would diamond nanorods be stronger than fullerene nanotubes? Nano Letters, 3(6), 805–809. https://doi.org/10.1021/nl025949t
  • Brenner, D. W., Shenderova, O. A., Harrison, J. A., Stuart, S. J., Ni, B., & Sinnott, S. B. (2002). A second-generation reactive empirical bond order (REBO) potential energy expression for hydrocarbons. Journal of Physics. Condensed Matter, 14(4), 783–802. https://doi.org/10.1088/0953-8984/14/4/312
  • Brenner, D. W., Shenderova, O. A., Areshkin, D. A., Schall, J. D., & Frankland, S. J. V. (2002). Atomic modeling of carbon-based nanostructures as a tool for developing new materials and technologies. Computer Modeling in Engineering & Sciences : CMES, 3(5), 643–673.
  • Shenderova, O. A., & Brenner, D. W. (2002). Atomistic simulation of grain boundaries, triple junctions and related disclinations. In Local lattice rotations and disclinations in microstructures of distorted crystalline materials: Proceedings of the International Workshop on local lattice rotations and disclinations in microstructures of distorted crystalline materials, held at Rauschenbach/Erzgebirge, April 10-14, 2000 (Solid state phenomena ; v. 87) (Vol. 87, pp. 205–213). Switzerland: Scitech; Enfield, N.H.: Distributed in the Americas by Trans Tech.
  • Shenderova, O. A., Zhirnov, V. V., & Brenner, D. W. (2002). Carbon nanostructures. Critical Reviews in Solid State and Materials Sciences, 27(3-4), 227–356. https://doi.org/10.1080/10408430208500497
  • Bernholc, J., Brenner, D., Nardelli, M. B., Meunier, V., & Roland, C. (2002). Mechanical and electrical properties of nanotubes. Annual Review of Materials Research, 32(2002), 347–375. https://doi.org/10.1146/annurev.matsci.32.112601.134925
  • Frankland, S. J. V., Caglar, A., Brenner, D. W., & Griebel, M. (2002). Molecular simulation of the influence of chemical cross-links on the shear strength of carbon nanotube-polymer interfaces. https://doi.org/10.1021/jp015591+
  • Adiga, S. P., & Brenner, D. W. (2002). Virtual molecular design of an environment-responsive nanoporous system. Nano Letters, 2(6), 567–572. https://doi.org/10.1021/nl025527j
  • Frankland, S. J. V., & Brenner, D. W. (2001). Hydrogen Raman shifts in carbon nanotubes from molecular dynamics simulation. Chemical Physics Letters, 334(1-3), 18–23. https://doi.org/10.1016/s0009-2614(00)01454-8
  • Shenderova, O. A., Lawson, B. L., Areshkin, D., & Brenner, D. W. (2001). Predicted structure and electronic properties of individual carbon nanocones and nanostructures assembled from nanocones. Nanotechnology, 12(3), 191–197. https://doi.org/10.1088/0957-4484/12/3/302
  • Shenderova, O. A., Brenner, D. W., Omeltchenko, A., Su, X., & Yang, L. H. (2000). Atomistic modeling of the fracture of polycrystalline diamond. Physical Review. B, Condensed Matter and Materials Physics, 61(6), 3877–3888. https://doi.org/10.1103/physrevb.61.3877
  • Nazarov, A. A., Shenderova, O. A., & Brenner, D. W. (2000). Elastic models of symmetrical < 001 > and < 011 > tilt grain boundaries in diamond. Physical Review. B, Condensed Matter and Materials Physics, 61(2), 928–936. https://doi.org/10.1103/physrevb.61.928
  • Li, Y. X., Brenner, D. W., Dong, X. L., & Sun, C. C. (2000). First principles prediction of gas-phase composition and substrate temperature for diamond film growth. Molecular Simulation, 25(1-2), 41–51. https://doi.org/10.1080/08927020008044111
  • Schall, J. D., & Brenner, D. W. (2000). Molecular dynamics simulations of carbon nanotube rolling and sliding on graphite. Molecular Simulation, 25(1-2), 73–79. https://doi.org/10.1080/08927020008044113
  • Shenderova, O., Mewkill, J., & Brenner, D. W. (2000). Nanoindentation as a probe of nanoscale residual stresses: Atomistic simulation results. Molecular Simulation, 25(1/2), 81. https://doi.org/10.1080/08927020008044114
  • Tragler, A., Srinivasan, L., Shenderova, O., McClauren, M., & Brenner, D. W. (2000). Novel simulation tools for materials engineering education. Molecular Simulation, 25(1-2), 121–130. https://doi.org/10.1080/08927020008044116
  • Nazarov, A. A., Shenderova, O. A., & Brenner, D. W. (2000). On the disclination-structural unit model of grain boundaries. Materials Science & Engineering. A, Structural Materials: Properties, Microstructure and Processing, 281(1-2), 148–155. https://doi.org/10.1016/s0921-5093(99)00727-3
  • Shenderova, O. A., Brenner, D. W., Omeltchenko, A., Su, X., Yang, L. H., & Nazarov, A. (2000). Properties of polycrystalline diamond: Multiscale modeling approach. Molecular Simulation, 24(1-3), 197–207. https://doi.org/10.1080/08927020008024196
  • Brenner, D. W. (2000). The art and science of an analytic potential. Physica Status Solidi. B, Basic Solid State Physics, 217(1), 23–40. https://doi.org/10.1002/(sici)1521-3951(200001)217:1<23::aid-pssb23>3.0.co;2-n

1989-1999

  • Shenderova, O. A., & Brenner, D. W. (1999). Atomistic simulations of structures and mechanical properties of < 011 > tilt grain boundaries and their triple junctions in diamond. Physical Review. B, Condensed Matter and Materials Physics, 60(10), 7053–7061. https://doi.org/10.1103/physrevb.60.7053
  • Shenderova, O. A., Brenner, D. W., & Yang, L. H. (1999). Atomistic simulations of structures and mechanical properties of polycrystalline diamond: Symmetrical < 001 > tilt grain boundaries. Physical Review. B, Condensed Matter and Materials Physics, 60(10), 7043–7052. https://doi.org/10.1103/physrevb.60.7043
  • Sinnott, S. B., Shenderova, O. A., White, C. T., & Brenner, D. W. (1999). Mechanical properties of nanotubule fibers and composites determined from theoretical calculations and simulations (vol 36, pg 1, 1998). Carbon, 37(2), 347.
  • Srivastava, D., Brenner, D. W., Schall, J. D., Ausman, K. D., Yu, M. F., & Ruoff, R. S. (1999). Predictions of enhanced chemical reactivity at regions of local conformational strain on carbon nanotubes: Kinky chemistry. Journal of Physical Chemistry. B, Condensed Matter, Materials, Surfaces, Interfaces & Biophysical, 103(21), 4330–4337. https://doi.org/10.1021/jp990882s
  • Sinnott, S. B., Shenderova, O. A., White, C. T., & Brenner, D. W. (1998). Mechanical properties of nanotubule fibers and composites determined from theoretical calculations and simulations. Carbon, 36(1-2), 1–9. https://doi.org/10.1016/s0008-6223(97)00144-9
  • Shenderova, O. A., Brenner, D. W., Nazarov, A. A., Romanov, A. E., & Yang, L. H. (1998). Multiscale modeling approach for calculating grain-boundary energies from first principles. Physical Review. B, Condensed Matter and Materials Physics, 57(6), R3181–3184. https://doi.org/10.1103/physrevb.57.r3181
  • Brenner, D. W., Schall, J. D., Mewkill, J. P., Shenderova, O. A., & Sinnott, S. B. (1998). Virtual design and analysis of nanometer-scale sensor and device components. Journal of the British Interplanetary Society, 51(1998), 137–144.
  • Sinnott, S. B., Colton, R. J., White, C. T., Shenderova, O. A., Brenner, D. W., & Harrison, J. A. (1997). Atomistic simulations of the nanometer-scale indentation of amorphous-carbon thin films. Journal of Vacuum Science & Technology. A, Vacuum, Surfaces, and Films, 15(3 pt.1), 936–940. https://doi.org/10.1116/1.580782
  • Brenner, D. W., White, C. T., Elert, M. L., & Walker, F. E. (1989). Chemical model for intrinsic detonation velocities. International Journal of Quantum Chemistry, 36(S23), 333–337. https://doi.org/10.1002/qua.560360836